LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
Jul C	M.Sc. DEGREE EXAMINATION – PHYSICS	
÷.	FOURTH SEMESTER – APRIL 2014	
PH 4807 - SPECTROSCOPY		
D Ti	ate : 29/03/2014 Dept. No. Max. : 100 Marks	
	PART-A	
Answ	ver ALL questions $(10 \times 2 = 20)$	
1. I	Define the term hyperfine structure of spectral lines.	
2. 7	The rotational constant for HCl 35 is observed to be 10.5979 cm ⁻¹ . Calculate the value of B for HCl 37 .	
3. 5	State the rule of mutual exclusion.	
4. V	What is depolarization ratio.	
5. V	What is continuum in the electronic spectra of a diatomic molecule?	
6. E	Explain the term progressions.	
7. S	State the advantages of using TMS when recording NMR spectra?	
8. V	What is spin-lattice relaxation?	
9. 0	Give the principle UPES?	
10. N	Mention any two advantages of surface spectroscopy.	
Part-B		
Answ	ver any FOUR questions $(4 \times 7.5 = 30)$	
11. a	a. Explain the factors that determine the intensity of a spectral line. Obtain an expression for J at	
V	which maximum population occurs. (5)	
b	b) The rotational spectrum of BrF shows a series of equidistant spectral lines spaced 0.71623 cm ⁻¹	
a	part. Find which transition give rise to the most intense line at 305 K. (2.5)	
12. a) Outline briefly each section of IR spectrometer. (5.5)	
t	b) Calculate the frequency of NO molecule whose force constant is 1609 N/ cm ⁻¹ . (7)	
13. \$	State and explain Franck-Condon principle. Explain how the intensity of spectral line is explained on	
t	he basis of it. Sketch the spectrum.	
14. (Obtain the expression for T_1 relaxation time in terms of transition probability. State the range of values for solids and liquids.	
15. E	Explain how AES spectroscopy is used for characterizing surfaces.	

Part-C

Answer any FOUR questions

(4 x 12.5 = 50)

- 16. a) Explain with the theory, the spectrum of symmetric top molecule.
 - b) The three consecutive lines in the rotational spectrum of HBr are 83.644, 101.785 and 113.112 cm⁻¹.
- 17. Explain the theory of pure rotational Raman spectra of linear molecule and symmetric top molecule.
- 18. What is Fortrat pabola? Explain band origin and band head in the rotational fine structure of electronic vibration spectra. Will there be a band at the band origin.
- 19. Discuss briefly the theory of NMR and derive the frequency of resonance. Explain the working of the spectrometer
- 20. Explain the principle and application of electron energy loss spectroscopy.
